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Abstract—The CIVS (Civilization-Inspired Vying Societies) 

system is a novel evolutionary learning multi-agent system that 

uses artificial life methods to produce highly-capable artificial 

intelligence agents proficient in one or more complex tasks as 

well as more general adaptability, reasoning, and survivability in 

dynamic, unpredictable environments.  A new cognitive 

architecture called CHARISMA is being developed as the brain 

of social agents within the CIVS system.  This paper mainly 

focuses on the development of conscious reasoning and 

unconscious reasoning mechanisms as well as the interactions 

between them for the CHARISMA cognitive architecture.  Our 

conscious reasoning design depends on recent advances in 

Markov logic network algorithms, in particular the online 

structure learning algorithm. Our unconscious reasoning design 

is based on Cartesian genetic programming, which we have 

adapted to work with the semantic hyper network data structure 

(used for knowledge representation).  A novelty-based 

evolutionary strategy is employed so that the unconscious 

reasoning is focused on discovering what Markov logic network 

based conscious reasoning may likely miss. This approach allows 

interactions between conscious and unconscious reasoning that 

would not have been possible in the past, and which we believe 

are vital to achieving more adaptable and creative problem-

solving.   

Keywords-cognitive architecture; conscious reasoning; Markov 

logic networks; unconscious reasoning 

I.  INTRODUCTION 

The interactions between conscious and unconscious 
reasoning are vital to human brain thought, perception, and 
action.  For example, in order to read this sentence your brain 
needs to classify visual patterns into letters and words, recall 
the possible meanings of those words, select the particular 
meaning for each word that best fits the current context, and 
only then can the sentence itself be understood.  Most likely, 
you are not consciously aware of this entire process.  The work 
is mostly done unconsciously, and it is only at the level of 
meaning that your conscious mind gets involved.  A child who 
is just learning to read, on the other hand, needs to consciously 
think through this process, and possibly add intermediate steps 
such as vocally sounding out the words.  There is much more to 
unconscious reasoning then just automating routine tasks.  The 
discovery of novel or counterintuitive solutions, and creative 
thinking in general, usually relies heavily on unconscious 
reasoning. 

To sidestep the debates about machine consciousness and 
strong vs. weak artificial intelligence, for our purposes in the 
context of an artificial agent “conscious reasoning” should be 
taken to mean deliberative, goal-driven computation based on 
logic and statistics, whereas “unconscious reasoning” should be 
taken to mean exploratory, novelty-driven computation based 
on context and not constrained by rules.  Leveraging the 
interactions between these very different kinds of reasoning 
will enable significant improvements in the cognitive 
capabilities of artificial agents, especially in the context of 
understanding and interacting with human users.  Adding 
computational cognitive reasoning capabilities to robotic and 
software systems will facilitate more intuitive and enhanced 
human-system interfaces, e.g. by incorporating cognitively 
plausible representations and qualitative reasoning.  With more 
commonality of reasoning, knowledge, and assumptions 
between intelligent systems and the humans that interact with 
them, these systems will be capable of more efficient operation 
and undertaking more challenging tasks.  Human-robot 
interaction [1] and human-robot collaboration [2] research has 
demonstrated this mutually-beneficial progression. This is 
especially important when dealing with non-technical users, as 
in elderly care systems, tour guide robots, etc., or when 
operating in stressful conditions, such as search & rescue, 
disaster relief, military applications, etc. 

To develop such a generally intelligent agent system where 
each agent in the system has cognitive reasoning capabilities 
and can naturally interact with humans is a challenging task.  
To tackle this challenge, we are developing the CIVS 
(Civilization-Inspired Vying Societies) system, which is a 
novel evolutionary learning multi-agent system loosely inspired 
by the history of human civilization. It uses a bottom-up 
artificial life approach to ultimately produce complex desired 
behaviors in agents and agent groups.  Taking inspiration from 
human history, we believe that agent’s intrinsic motivations 
and social interactions between agents are the keys to truly 
open-ended developmental progress.  In this way, agent fitness 
is primarily determined by the self-improvement, the 
competition and cooperation among agents and agent groups.  
Thus, it is impossible to settle on a “good enough” 
configuration, since the bar for success is constantly being 
raised by the progress of other agents.  CIVS is designed to 
generate artificial agents that are inherently social in how they 
think, learn, adapt, and operate.  Through this method, the 
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agents and agent systems have the potential to be more 
adaptable and generally intelligent than existing systems.  

To achieve our goals in the CIVS system, we have 
proposed the CHARISMA (Context Hierarchy-based Adaptive 
ReasonIing Self-Motivated Agent) cognitive architecture in our 
previous work [3], which serves as the brain of a social agent in 
CIVS.  The overall design of the CHARISMA cognitive 
architecture was inspired by Baars’ Global Workspace Theory 
[4].  In this paper we mainly focus on the development of a 
new cognitive framework of conscious and unconscious 
reasoning mechanisms, and the interactions between conscious 
and unconscious reasoning.  We will only provide the general 
architecture of this cognitive reasoning framework in this 
paper.  More specific applications and experimental results will 
be provided in our future papers.   

The rest of the paper is organized as follows.  Section II 
provides relevant background information, such as the general 
description of the CIVS system, the CHARISMA cognitive 
architecture, and core reasoning in CHARISMA. The design of 
CHARISMA’s conscious reasoning is explained in Section III.  
Section IV describes the CHARISMA’s unconscious reasoning 
method.  The interaction between the conscious and 
unconscious reasoning is discussed in Section V.  Section VI 
gives the conclusion and describes future work. 

II. BACKGROUND 

A. Cognitive Architectures 

Most cognitive architectures attempt to replicate certain 
behavioral and/or structural properties observed in humans, 
though at varying levels of abstraction.  Since Newell argued 
for the importance of a unified theory of cognition [5], different 
cognitive architectures have been proposed.  A recent survey of 
cognitive architectures is provided in [6].  The ACT-R [7] 
family of cognitive architectures emphasizes human 
psychological verisimilitude and has been used to model 
nuances of human memory and attention. The CLARION [8] 
cognitive architecture focuses on the distinction between 
implicit and explicit processes and the interactions between 
them with its dual representational hybrid structure.  The 
ICARUS [9] cognitive architecture is primarily concerned with 
behavior in embodied agents; it emphasizes perception and 
action over abstract problem solving.  The LIDA [10] cognitive 
architecture is based on Global Workspace Theory and focuses 
on neuropsychologically plausible roles of consciousness in 
cognition.  Soar [11] began as a pure symbolic production 
system, and has since been enhanced and extended with 
specialized modules for a wide variety of different capabilities. 

B. The CIVS System 

The CIVS system is a multi-agent system designed to 
produce intelligent emergent behaviors and broad adaptability 
in groups of social learning agents.   The general composition 
of the CIVS system is shown in Fig. 1(a).  It consists of a 
World Engine which is responsible for running the simulation, 
and the 3D Engine which allows human observation and 
interaction (via the GUI) with the simulation. We have 
developed an embedded 3D CIVS simulator which allows 
human observation and interaction with the agents. Fig. 1(b) 
shows one snapshot of the CIVS simulator. The environment 

used for CIVS is a complex 3D simulated world governed by 
realistic physics to present the agents with a complex, 
challenging world.   Different scenarios may add additional 
constraints and possibilities to the system. 
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Figure 1.  (a) The framework of the overall CIVS simulation system. (b) 

One screenshot of multiple agents in the CIVS simulator (four blue agents 

with arms cooperate to surround one red agent in the middle).  

C. The CHARISMA Cognitive Architecture 

The CHARISMA model is inspired by the Global 
Workspace Theory [4].  In this model, the role of 
consciousness is to broadcast the relatively small chunk of 
information that is currently deemed most important to a host 
of unconscious faculties.  Coalitions of unconscious processes 
work together to extract information, make associations, 
decompose problems, etc.   
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Figure 2.  The framework of the CHARISMA cognitive architecture.  

Blue connectors represent flows that are primarily information, 

whereas red connectors represent flows that are primarily control 

signals. 

As shown in Fig. 2, the general logic flow of the 

CHARISMA is as follows. Stimuli represent all the incoming 

sensory data, which will be briefly cached in sensory memory 

to allow active and passive perception to extract the important 

information and integrate it into the context hierarchy.  Active 

perception will focus on what is most relevant to the subject 

currently in conscious focus, whereas passive perception will 

look for sudden or unexpected changes that might trigger a 
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reflex action. Reflex will potentially short-circuit the 

conscious thought process, allowing very rapid response to 

unambiguous stimuli.  The context hierarchy is the robot 

brain’s hierarchical model of the state of the world.  The 

contexts at the top layers are related to self, such as “self as 

agent” and “self as knower” which are fairly permanent.  From 

there, the hierarchy will gradually progress from long-term to 

short-term contexts, with immediate situational details at the 

bottom.  The context hierarchy will provide an organized 

representation of the known state of the world (including the 

robot’s own internal state) to all the systems within the green 

box.   

The potential knowledge/skills that CHARISMA robots 

need to explore are very large and high-dimensional in open-

ended environments. Therefore, how to explore new 

knowledge/skills and what to learn are very critical questions 

for the robots. The robot’s priorities will be determined by a 3-

tier motivational system composed of preservation drives 

(hunger, pain, etc.), intrinsic motivation (curiosity, fun, flow, 

etc.), and conscious volition (deliberate plans). The intrinsic 

motivation subsystem will serve to prioritize learning paths 

based on the robot’s ability to make meaningful progress along 

that path, which naturally leads to chains of progress.  

Essentially, the motivational system will motivate the robot to 

improve its skills and knowledge in the current context, or seek 

a new context if the current one has become boring (i.e., 

improvement is too slow). In this way, the robot will be able to 

make incremental progress toward complex, difficult abilities 

that it could never have learned directly.  Meanwhile, intrinsic 

motivation will also make the robot’s learning self-directed and 

fully autonomous. In addition, based on the preservation drives, 

the robot will create abstract needs that were found supportive 

of its previously established needs.  Since abstract needs may 

be used to create new needs as well, a complex system of 

internal drives will emerge.  Motivations resulting from these 

drives will compete to select intended actions and will support 

the robot’s cognitive process of attention, planning and action 

monitoring.   Please refer to our previous paper [3] for the 

details of CHARISMA architecture.  

D. Reasoning Core in CHARISMA 

The white square in Fig. 2 designates the conscious 
components of the CHARISMA cognitive architecture.  
Conscious focus governs the agent’s focus of attention.  In a 
sense, conscious focus acts as a filter, so that only the most 
important information from working memory enters the agent’s 
consciousness.  What is important at any given time and the 
agent’s goals are governed by the agent’s motivation systems, 
which we must gloss over in this paper.  A separate paper will 
explore the agent motivation systems in detail.   

The core of agent reasoning is the problem → unconscious 
processes → solution loop.  The problem subsystem is 
responsible for providing a coherent representation of the task, 
question, objective, etc. that currently has conscious focus.  
This has an organizational role, and also serves as a sort of 
preprocessing for the myriad unconscious processes.  The 

unconscious processes are the suite of unconscious abilities, 
skills, intuitions, etc. that have been learned and developed by 
the agent.  Unconscious processes are evolved using Cartesian 
genetic programming.  Each unconscious process is fairly 
simple on its own, providing at most one specific service.  
Unlike the conscious components, the unconscious processes 
have direct access to working memory.  The solution 
subsystem interprets the consensus/solution(s) constructed by 
the unconscious processes from the current problem.  The 
solution subsystem is also an important component of agent 
long-term learning, since it monitors the expected results of the 
current solution, which will be needed for future comparisons 
with observed results. 

Conscious volition can influence and even outright overrule 
other subsystems, such as denying a reflex action or overriding 
the contextual attention priorities that would otherwise 
determine what information enters conscious focus.   Action 
represents any attempt the robot makes to do something 
tangible in the environment, such as changing its own position, 
manipulating an object, interacting with another robot, etc.   

III. CONSCIOUS REASONING IN CHARISMA 

A. Markov Logic Networks 

Statistical relational learning [13] deals with machine 
learning in domains exhibiting both uncertainty and complex 
relational structures.  Markov Logic Networks (MLNs) [14] are 
a relatively new approach to statistical relational learning that 
generalizes both full first-order logic and Markov networks.    
An MLN consists of a set of weighted clauses in first-order 
logic.  This weighting softens first-order logic by making 
situations where some clauses are unsatisfied less likely but not 
impossible.  An MLN functions as a template for constructing 
ground Markov networks.  Grounding is the assignment of 
constants from the current context to the first-order logic 
variables.  Different groundings (i.e. sets of constants) will 
produce different ground networks, potentially of widely 
varying size.  However, all the ground networks produced by 
the same MLN will have certain regularities in structure and 
parameters, determined by the MLN. 

In formal terms, given an MLN, the probability of a 
possible world,  , is defined as: 

 

       
 

 
                                     (1)  

                                              (2) 

 
where   is the set of all ground atoms,   is the set of all clauses 
in the MLN,    is the weight of clause     , and       is the 
number of true groundings of    in  .    is just the 
normalization constant. 

B. Online Structure Learning  

Online Structure Learning (OSL) [15], recently proposed 
by Huynh and Mooney, is the first algorithm for MLNs that 
performs online learning of both the structure (i.e. clauses) and 
the parameters (i.e. weights).  All earlier methods for learning 
the structure of an MLN [16-20] are batch algorithms, and thus 
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are infeasible to use for a learning agent operating in a dynamic 
environment.  OSL utilizes online max-margin structure 
learning with mode-guided relational path-finding and online 
max-margin   -regularized weight learning. 

C. Conscious Reasoning  

Ideally, at any given time   , the agent should select an 
action      (  being the set of all possible actions) such that 

progress towards achieving its current goal is maximized.  In 
practice, this means making an educated guess about which 
action will be most beneficial.  In other words, the agent should 
select the action for which the best possible world is predicted 
at time     .  Making the predictions is just a matter of 
inferencing on the MLN.  The real question is how the agent 
can make the best MLN based on the information it currently 
has. To this end, OSL is employed in our system since it would 
not even be possible to make best MLN prediction online 
without online learning of new clauses.   

IV. UNCONSCIOUS REASONING IN CHARISMA 

A. Cartesian Genetic Programming  

Cartesian Genetic Programming (CGP) [21-22] represents 
programs in the form of directed acyclic graphs.  Besides the 
original form, many CGP variants exist, such as Modular CGP 
which adds automatically defined functions, Self-Modifying 
CGP where the phenotype varies over time, Developmental 
CGP which adds bio-inspired neural/cellular developmental 
and graph rewriting mechanisms, and Cyclic CGP which 
allows cycles in the graph [23].  In the original version of CGP, 
the genotype is a fixed-length list of integers that specifies the 
primitive functions to use and the connections to make, in order 
to construct the program graph.  The function genes, i.e. the 
integers identifying which functions to use, have as values 
indices for a user-defined table of primitive functions.  The 
connection genes specify the inputs to their respective 
functions.  At the end of the genotype, the output genes specify 
what each program output is connected to.   

Constructing the phenotype is a recursive process starting 
from the outputs and connecting forward until no further 
connections are required.  A consequence of this is that CGP 
genotypes often contain noncoding genes.  Noncoding genes 
are important because they allow for silent mutations.  The 
effect of a silent mutation is to preserve the current 
functionality (i.e. phenotype) while changing the set of 
daughter programs accessible through subsequent mutations.  
Silent mutations can accumulate until a later mutation 
reactivates the formerly noncoding genes, and thus a small 
mutation causes a major change in the phenotype.  Analysis 
indicates that CGP is most efficient when a neutral search 
evolutionary strategy is used with large genotypes where most 
(e.g. 95%) of the genes are inactive [24].  In a neutral search, a 
parent is always replaced by its offspring if they have equal 
fitness. 

B. Novelty Search in Genetic Programming 

Premature convergence to local optima is a significant 
problem in evolutionary methods, including genetic 
programming [25].  It occurs when the diversity of the 
population dwindles before the search discovers a suitable 

solution, causing progress to stall.  Searching based on novelty 
rather than an objective-based fitness metric is a radical 
approach to solving this problem that has yielded promising 
results in evolving artificial neural networks [26-27] and in 
genetic programming [28].  Furthermore, novelty search has 
been successfully combined with objective-based fitness 
metrics via a Pareto-based multi-objective evolutionary 
algorithm [29]. 

Almost any fitness-based evolutionary algorithm can be 
converted into a novelty search by simply replacing the fitness 
metric with a novelty metric.  The intent of the novelty metric 
is to reward diverging from prior behaviors, thus it is basically 
a uniqueness score rather than a fitness score.  
Computationally, this can be measured using sparseness in the 
behavior space.  Lehman and Stanley measure the sparseness   
around individual   using the k-nearest neighbor algorithm: 

     
 

 
           

 
                             (3) 

where    is the ith-nearest neighbor of   according to the 
behavior space distance metric, dist(). 

A key point is that it is novelty in the behavior space, not 
novelty in the genotype space, that is rewarded.  Therefore dist( 
) is domain-specific.  The set of neighbors for comparison is 
composed of two distinct groups: the current population and an 
archive of previous novel individuals.  Upon evaluation, an 
individual with           is automatically added to the 
archive.  The minimum sparseness to count as “novel”      is 
a parameter that may be either fixed or dynamically adjusted 
over time. 

C. Adapting CGP for Semantic Hyper Networks 

A semantic hyper network (SHYNE) was proposed in [12] 
as a dynamic data structure for agents’ knowledge 
representation, which is composed of nodes and links, with 
nodes being further divided into basic nodes and complex 
nodes.  A basic node is similar to a node in a regular semantic 
network and it represents one simple or fundamental concept.  
A complex node is actually a sub-network composed of nodes 
and the links between them.  Note that a complex node can act 
as a single node for the purposes of linking to other nodes, but 
its internal nodes also remain individually linkable.  Another 
key feature of SHYNE is that both nodes and links have 
extensible attribute lists.  Any node within the network, at least 
hypothetically, can be used to define a new attribute for nodes 
and/or links. 

Each SHYNE component (i.e. node or link) has a globally 
unique identifier, which are the integers passed between 
functions in our CGP program graphs.  Because the function 
table is domain specific, we will not provide specific function 
table here in this paper (specific function table will be provided 
in our future paper with specific applications). Instead of using 
modular CGP style modules, our approach is to add an 
unconscious process to the function table if its score exceeds a 
set threshold, essentially creating a new primitive function for 
evolving unconscious processes to potentially use. 
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V. INTERACTION BETWEEN CONSCIOUS AND UNCONSCIOUS 

REASONING 

    The unconscious processes also have two important roles to 

play.  First, it improves the information available to online 

structure learning.  Conscious focus has already done filtering 

based on motivational priorities.  Unconscious processes can 

retrieve information from memory, and utilize lower-priority 

information from working memory to identify patterns, 

relationships, etc. and do other processing to provide online 

structure learning the best possible input based on the 

available information, current context, and the agent’s past 

experience.  Second, it proposes novel clauses that online 

structure learning might not discover on its own.  Owing to 

their evolutionary rather than logical nature, Unconscious 

processes are better suited to discovering useful clauses “off 

the beaten path” of relational pathfinding. 

VI. CONCLUSION AND FUTURE WORK 

Extensive interaction between conscious and unconscious 
reasoning mechanisms is a core aspect of the theory of mind in 
the intelligent CHARISMA agents. Online structure learning 
allows us to utilize Markov logic networks in ways which has 
never been possible before, because it can learn both the 
structure and parameters online.  This makes it feasible to use 
Markov logic networks for conscious reasoning in a 
developmental learning cognitive agent.  It also allows us to 
integrate Markov logic networks based conscious reasoning 
with CGP-based unconscious reasoning.  We will provide some 
proof-of-concept demonstration of this new cognitive 
reasoning system in our future work based on different 
applications.  

Since this is an ongoing project, currently we are 
developing the simulation to test our proposed cognitive 
reasoning mechanisms in a variety of physics puzzle scenarios, 
as shown in Fig. 3.  Fig. 3 depicts an example of such a 
scenario.  As development of the CHARISMA cognitive 
architecture continues, more challenging and interesting test 
cases will be possible.  Many of the subsystems in 
CHARISMA are quite complex in their own right.  In the 
future, we will present implementation and testing information 
about other CHARISMA subsystems and components as we 
gradually progress towards a fully operating implementation of 
our CIVS system. 

 

Figure 3.  This physics puzzle scenario requires the agent to build a block 

staircase to pass the obstacle. 
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